If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+t=84
We move all terms to the left:
t^2+t-(84)=0
a = 1; b = 1; c = -84;
Δ = b2-4ac
Δ = 12-4·1·(-84)
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{337}}{2*1}=\frac{-1-\sqrt{337}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{337}}{2*1}=\frac{-1+\sqrt{337}}{2} $
| 0.6a=-9 | | 5c-4c+c-3c,c=-3 | | 200x-125x+43425=45000 | | x-10(0)=5 | | 3y-6=2× | | 0-10y=5 | | A=-3n+7 | | 10p=7p+12 | | X^4=y | | 2x+2(x+1)=25 | | 105-9d=87 | | (3x+7)=x+19 | | 12x-5=151 | | -40+8m=8(7+7m) | | -15+3x=-45 | | 1/2=2w | | -40+8m=8(7+7m | | (243)^x+5=(2187)^3x-1 | | 17k=225 | | 13=-3t-8 | | -2÷v+18=17 | | 7(c-12)=-77 | | v÷-2+18=17 | | 11b=4b+8 | | 20-1/2m=4 | | 4=20-1/2m | | -4(2x-3)+5x=48 | | -4(2x-3×5x=48 | | 8x+70+4x-15=790 | | y+3y-40=180 | | 1/2(x-1)-0.4(x-6)=0.5 | | 2b^2+24b+79=0 |